Human beings fail the way all complex systems fail: randomly and gradually. As engineers have long recognized, many simple devices do not age. They function reliably until a critical component fails, and the whole thing dies instantly. A windup toy works smoothly until a gear rusts or a spring breaks, and then it doesn’t work at all. But complex systems—power plants, say—have to survive and function despite having thousands of critical components. Engineers therefore design these machines with multiple layers of redundancy: with backup systems, and backup systems for the backup systems. The backups may not be as efficient as the first-line components, but they allow the machine to keep going even as damage accumulates. Gavrilov argues that, within the parameters established by our genes, that’s exactly how human beings appear to work. We have an extra kidney, an extra lung, an extra gonad, extra teeth. The DNA in our cells is frequently damaged under routine conditions, but our cells have a number of DNA repair systems. If a key gene is permanently damaged, there are usually extra copies of the gene nearby. And, if the entire cell dies, other cells can fill in.Annals of Medicine: The Way We Age Now: Reporting & Essays: The New YorkerNonetheless, as the defects in a complex system increase, the time comes when just one more defect is enough to impair the whole, resulting in the condition known as frailty. It happens to power plants, cars, and large organizations. And it happens to us: eventually, one too many joints are damaged, one too many arteries calcify. There are no more backups. We wear down until we can’t wear down anymore.
Sunday, April 29, 2007
The Way We Age Now
Subscribe to:
Post Comments (Atom)
1 comment:
Thank you for your interesting comments!
I thought perhaps you may also find this related post interesting to you:
Longevity Science: The Way We Age
http://longevity-science.blogspot.com/2007/04/way-we-age.html
Post a Comment